
maXbox Signer

Start Signing a File

1.1 A Security Central

Today we go through the signing of code.

What about scripts or executables that reside on a file share inside the
network or a cloud? On my machine they run just fine but keep in mind,
that all scripts must reside in a certain directory you trust, sort of
convention over configuration.
So during development, we may want to create certificates for our own
purposes and then implicitly trust them.

What about trust in maXbox4.exe as the running host machine of the
scripts. After test, scan and examine you get the SHA1 of the executable
to make sure for example V 4.0.2.80 the SHA1 (20 bytes):

CDC0D39FE16CE883EA98FF65C7E31C874FE1520B

In menu /Help/About you can check this with a recompute of the Hash.

Also a certificate for digital signing is possible (see above) what we are
gong to do now.
Certificates are a type of identification that try to ensure that you know
who you are talking to, and that it is not somebody else just impersonating
the person you are expecting to be talking to. In more technical terms, a
certificate binds together a name or binary (an identity) with a public key.

But we don't really want to go to an app- or store authority and get a
signed certificate for code signing, because that costs money and makes
us dependent. How can you sign and share code with self signed
certificates and digital signatures1 is now our topic.
So first we have to build our root certificate:
We do this with a tool from MS called makecert. Most certificates in
common use are based on the X.509 v3 certificate standard.
First I open the shell with the MS SDK:

C:\maXbox\EKON_BASTA\EKON19\Windows Kits\10\bin\x64>

C:\Program Files\Microsoft SDKs\Windows\v7.1\Bin>
 makecert -n "CN=maXboxCertAuth"
 -cy authority -a sha1 -sv "maXboxPrivateKey3.pvk" -r
"maXboxCertAuth3.cer"
Succeeded

In the example above I changed the path to my SDK so its different to
yours maybe. During the process you need a strong password to protect
your private key.

maXboxPrivateKey3.pvk

So a public key certificate, usually just called a certificate, is a digitally
signed statement that binds the value of a public key to the identity of the
person, device, or service that holds the corresponding private key.
Next we create the second certificate with the purpose to sign all files we
want. In our case, you remember, we want to sign an executable:

C:\Program Files\Microsoft SDKs\Windows\v7.1\Bin>makecert -n
"CN=maXbox3signer"
-ic maxboxcertauth3.cer -iv maXboxprivatekey3.pvk -a sha1 -sky
exchange -pe -sv maxbox3signerprivatekey.pvk maxboxsigner.cer
Succeeded

C:\Program Files\Microsoft SDKs\Windows\v7.1\Bin>

So you need (generate) another private key which belongs to the signer
certificate. The output should be the second certificate:

maxboxsigner.cer

1Cipher a file with a private key and verify it with the public key

2

Windows servers and others use .pfx files that contain the public key file
(for SSL Certificate file for example) and the associated private key file.
Most external cert authorities provides your SSL Certificate file (public key
file). You use your server to generate the associated private key file as
part of the CSR.
You need both the public and private keys for an official SSL Certificate to
function. So, if you need to transfer your SSL Certificates from one server
to another, you need to export is as a .pfx file.

Now we generate that as well with the shell:

C:\Program Files\Microsoft SDKs\Windows\v7.1\Bin>pvk2pfx -pvk
"maXboxPrivateKey3
.pvk" -spc maXboxCertAuth3.cer -pfx maXboxCertAuth3.pfx -pi
password

So it's time to make the last step namely to sign our executable with
another shell tool called signtool:

C:\maXbox\EKON_BASTA\EKON19\Windows Kits\10\bin\x64>signtool
sign /f "maxboxsigner.pfx" /p "password" /tr
http://tsa.starfieldtech.com /td SHA256
C:\maxbox\maxbox3\work2015\maxbox3digisign_certificates\maxbox
44.exe

Done Adding Additional Store
Successfully signed:
C:\maxbox\maxbox3\work2015\maxbox3digisign_certificates\maX
box44.exe

I renamed the exe to maxbox44.exe just to control the signing because the
new exe is larger filled with cert informations and therefore has another
hash code:

D5225CE8645193AD341937142AD858F734DB9EC1

Now your exe is self-signed but not trusted by an authority. But we don't
really want to go to an app- or store authority and get a signed certificate
for code signing, because that costs money and makes us dependent.
Instead, what we can do is create our own certificate authority and then
issue certificates to ourselves to use.
We place this fake certificate authority's certificate in our computer's
trusted certificate authorities store thereby causing our computer to
implicitly trust all the certificates that we issue from that authority.
How can you sign and share code with self signed certificates and digital
signatures is the motivation of this report.
In the end you can see extended properties which allows you to inspect
the executable and also test it with signtool verify see below.
I'm signing an EXE program with a certificate issued by a trusted CA or
self-signed. I'm using signtool.exe from the Windows SDK v7.1a or v10.

3

4

As a test you can verify your signature:

C:\maXbox\EKON_BASTA\EKON19\Windows Kits\10\bin\x64>signtool
verify /v /pa
C:\maXbox\maxbox3\work2015\maXbox3digisign_certificates\maxbox
4sign.exe

Verifying: ..\work2015\maXbox3digisign_certificates\maXbox4sign.exe

Signature Index: 0 (Primary Signature)
Hash of file (sha1): 2E1157EFF8F9EB2F69C7809C1EDCBD1727692B1F

Signing Certificate Chain:
 Issued to: maXboxCertAuth
 Issued by: maXboxCertAuth
 Expires: Sun Jan 01 00:59:59 2040
 SHA1 hash: 6F83207B500DCC0E32A719599CBC6BD7E6B2A04D

 Issued to: maXbox3signer
 Issued by: maXboxCertAuth
 Expires: Sun Jan 01 00:59:59 2040
 SHA1 hash: 80F45386E921A1DD620D59BE83D495E5352A9358

The signature is timestamped: Wed Feb 03 18:32:56 2016
Timestamp Verified by:

5

 Issued to: Starfield Root Certificate Authority - G2
 Issued by: Starfield Root Certificate Authority - G2
 Expires: Fri Jan 01 00:59:59 2038
 SHA1 hash: B51C067CEE2B0C3DF855AB2D92F4FE39D4E70F0E

 Issued to: Starfield Timestamp Authority - G2
 Issued by: Starfield Root Certificate Authority - G2
 Expires: Mon Mar 16 08:00:00 2020
 SHA1 hash: 113B5604A3689AEB636361771C5CA8DEBC97C02C

Successfully verified:
C:\maXbox\maxbox3\work2015\maXbox3digisign_certificates\maXbox
4sign.exe

Number of files successfully Verified: 1
Number of warnings: 0
Number of errors: 0

Next I want to stress the chain of certificate (block chain is one of the next
big thing). A certificate authority themselves have a certificate with which
they digitally sign all the certificates they issue. My machine (and pretty
much everyone's) has a store of the certificates (see first picture page 1)
of these different certificate authorities. The computer then knows that if
its sees any certificate that has been signed by one of these trusted
certificate authorities' certificate, then the pc should trust that certificate.
This concept is called "Chain Trust". The "chain" part refers to the "chain"
of certificates-signing-certificates and it looks like:

6

1.2 Share Trusted Bytecode

Firstly, a few concepts. Most certificates in common use are based on the
X.509 v3 certificate standard and the name byte-code stems from instruct-
ion sets which have one-byte op codes followed by optional parameters.
Intermediate representations such as byte-code may be output by pro-
gramming language implementations to ease interpretation, or it may be
used to reduce hardware and operating system dependence by allowing
the same code to run on different platforms. So you can share your code
as source in a normal text-file (*.txt) or as bytecocde (*.psb).
In some cases, you may want to export or deliver a script with its byte-
code to store on removable media or to use on a different computer
without the source as a text-file. This is how you can do that:

1. You open a script and compile it before.
2. you go to /Options/Save Bytecode/ and the console writes:

-----PS-BYTECODE (PSB) mX4-----13:48:38
-----BYTECODE saved as:
C:\maXbook\maxbox3\mX3999\maxbox3\examples\287_eventhandl
ing2_primewordcount.psb -----
IFPS#

3. you load the bytecode by /Options/Load Bytecode...

IFPS#
mX3 byte code executed: 10.06.2015 13:53:20 Runtime:
0:0:1.577 Memoryload: 60% use
ByteCode Success Message of:
287_eventhandling2_primewordcount.psb

4. When testing is finished you send the bytecode to your client

But there are some restrictions to this procedure:

You should avoid self referencing commands like maxform1.color or
memo1.text in your byte-code. Also reflection calls, unsafe type casts or
runtime type information can fail.

So during development, we may want to create code for our own purposes
and then implicitly share them to test, deploy or reuse. But we don't really
want to go to an app- or store authority and get a signed certificate for
code signing, because that costs money and makes us dependent.
If you don't want to share the source code for property or security reasons
you can deliver the byte-code of the script which they can load and run in
maXbox like previously said.
On the other side you want that others can trust to your code so you
deliver them simply the SHA1 hash of the file as a signature:

5. You open the bytecode as a normal file in the editor (see below):

7

6. ..\examples\287_eventhandling2_primewordcount.psb File loaded
7. you go to /Program/Information and copy the SHA1 of file:

F01801AA105463EC6A937602AD2FA67DAA06C8D0
8. you send this number (fingerprint) to your client
9. Client loads the byte-code and compares the fingerprint to verify!

By meaning signature is just a hash. Real Code Signing uses a certificate
associated with key pairs used to sign active content like a script or an
application explained above. The storage location is called the certificate
store. A certificate store often has numerous certificates, possibly issued
from a number of different certification authorities.

But where does this byte code function come from? Byte code is an
intermediate step, right before compilation into machine code. Because
the last step is left to load time (and often runtime, as is the case with
Just-In-Time (JIT) compilation, byte code is architecture independent.

But having a call to a DLL isn't independent from the operating system –
this native call cant load on a Linux maXbox. So the same call is valuable
from a DLL only on Win:

function MyNETConnect(hw: hwnd; dw: dword): Longint;
 external 'WNetConnectionDialog@Mpr.dll stdcall';

You see the library is called Mpr.dll as the external DLL.

And this is how we call the external function:
if MyNETConnect(GetForegroundWindow, RESOURCETYPE_DISK)
 = NO_ERROR then writeln('connect dialog success');
And this is how byte-code decompile works:

8

Proc [3] Export: STSPAWNAPPLICATION1COMPLETED -1 @44
 [0] PUSHTYPE 27(U8) // 1
 [5] ASSIGN Base[1], [1]
 [17] CALL 6
 [22] POP // 0
 [23] PUSHTYPE 18(String) // 1
 [28] ASSIGN Base[1], ['Process Done']
 [55] CALL 18
 [60] POP // 0
 [61] RET

We do not need to understand this byte-code, but doing so can assist
debugging and can improve performance and memory convention.

1.3 Get Scripts from the Web

Create an account of your own on code share to collaborate with project
owners and other members on existing projects, and create and register
projects of your own.
In maXbox you can download, load and run directly scripts from the web.
When setting the script execution policy, I generally first see what it is,
then set the policy, and then check again to make sure that I have
properly set the policy. If you don't want execute scripts from the web you
can stop this in the ini-file maxboxdef.ini with N. This is seen in the
following figure.

LINENUMBERS=Y
EXCEPTIONLOG=Y
EXECUTESHELL=N
MEMORYREPORT=Y
BOOTSCRIPT=Y

To set the execution policy to require digital signatures if the script comes
from a remote location is planned for a next version.
But how do you get a web-script?
Just type in menu ../Help/Get Web Script

If you only want to run a script from a remote share or http site without
modifying the default script execution policy, you can use this simple
dialog when launching maXbox shell. You can specify the path to the script
by using the file or url-site parameter. This is seen in the figure above.

9

Then it will ask you to run the script in a second box. Yes it will start in any
case a second instance (like a sandbox) so your first instance of maXbox
won't touched.
After you have a second box or console that is running for the execution
policy and you said yes, you can run the remote script again and again.
Remember, the script execution policy in the ini-file is not a security
feature to protect you against malware cause no scanning or checking
whatsoever of the file is made.
It is a convenience or convention feature. In a car, a seat belt actually
protects you, and is therefore a security feature. The beeper (like a dialog)
that annoys you until you put the seat belt on is a convenience feature
(i.e., it does not actually protect you).
It's up to you to decide yes or no and study the script before you run it.

The error seen in the figure below is because the script was downloaded
from the Internet and you set in the ini-file EXECUTESHELL=N . The file
itself has now the block property set.

To unblock the script, you have to change the property in the ini-file and
restart the box again. After the script is unblocked, it should run without
any problems.

 Be aware you should first examine a script to make sure that you know
what it actually does! In addition, testing scripts in a Virtual Machine is a
great practice to enter.
You can also copy just a section or a function from the web-script like this:

function TJvNetworkConnect_Execute: Boolean;
var fconnect: boolean;
begin
 //RESOURCETYPE_DISK

10

 //WNetDisconnectDialog
 fconnect:= true;
 if fconnect then
 Result:= WnetConnectionDialog(GetForegroundWindow,

 RESOURCETYPE_DISK) = NO_ERROR
 end;

You copy it to the clipboard, and then paste it into your script editor. This
makes maXbox think the script was locally generated. Therefore, it will not
be blocked. As with any other script, you should also ensure you know
what scripts downloaded from the web repository do also.

 So the idea of download and opening the byte-code file directly isn’t at
all successful, hence we shall use a Hex editor to disassemble the byte-
code first, which will produce the implementation logic in hexadecimal
bytes.
By the way at last:
In maXbox you can also map (connect) or disconnect a network drive
without a dialog as a console or shell call!:

ConnectDrive('Z:', '\\Servername\C', True, True);

 Const SHARENAME = '\\MAXBOX8\Users\Public';

 if ConnectDrive('Z:','\\MAXBOX8\Users\Public', True,True) = NO_ERROR then
 writeln('Net Share Z:\ Connected'); //see appendix with const

 DisconnectNetDrive('Z:', True, True, True);

http://www.softwareschule.ch/download/maxbox_starter28.pdf

11

http://www.softwareschule.ch/download/maxbox_starter28.pdf
file://MAXBOX8/Users/Public

http://www.softwareschule.ch/download/maxbox_starter37.pdf

Feedback @ max@kleiner.com

Literature: Kleiner et al., Patterns konkret, 2003, Software & Support

http://sourceforge.net/projects/maxbox/files/Examples/maXbox4digisign_certificates.zip/download

http://sourceforge.net/projects/maxbox/files/Examples/12_Security.zip/download

http://www.softwareschule.ch/download/codesign_2015.pdf

http://superuser.com/questions/462940/digitally-signing-software-self-signing-cerificate

http://www.digitallycreated.net/Blog/38/using-makecert-to-create-certificates-for-development

http://resources.infosecinstitute.com/java-bytecode-reverse-engineering/

https://github.com/maxkleiner/maXbox3/releases

1.4 Appendix Event Log Study

// WriteToOSEventLog//

procedure WriteToOSEventLog(const logName, logCaption, logDetails : UnicodeString;
 const logRawData : String = '');
var
 eventSource : THandle;
 detailsPtr : array [0..1] of PWideChar;
begin
 if logName<>'' then
 eventSource:=RegisterEventSourceW(nil, PWideChar(logName))
 else eventSource:=RegisterEventSourceW(nil,
PWideChar(ChangeFileExt(ExtractFileName(ParamStr(0)), '')));
 if eventSource>0 then begin
 try
 detailsPtr[0]:=PWideChar(logCaption);
 detailsPtr[1]:=PWideChar(logDetails);
 ReportEventW(eventSource, EVENTLOG_INFORMATION_TYPE, 0, 0, nil,
 2, Length(logRawData),
 @detailsPtr, Pointer(logRawData));
 finally
 DeregisterEventSource(eventSource);
 end;
 end;
end;

12

http://sourceforge.net/projects/maxbox/files/Examples/12_Security.zip/download
http://sourceforge.net/projects/maxbox/files/Examples/maXbox4digisign_certificates.zip/download
https://github.com/maxkleiner/maXbox3/releases
http://resources.infosecinstitute.com/java-bytecode-reverse-engineering/
http://superuser.com/questions/462940/digitally-signing-software-self-signing-cerificate
http://www.softwareschule.ch/download/codesign_2015.pdf
mailto:max@kleiner.com
http://www.softwareschule.ch/download/maxbox_starter28.pdf

	1.1 A Security Central
	1.2 Share Trusted Bytecode
	1.3 Get Scripts from the Web
	1.4 Appendix Event Log Study

