
maXbox Starter 44

Work with maXbox IDE Improvements II

1.1 Command with Macros

Today we step through optimize your maXbox. This tool is great for fast
coding but also provides a mechanism for extending your functions and
quality with checks and tests.

You can set the macros like #host: in your header or elsewhere in a
comment line, but not two or more on the same line when it expands with
content:

Try: 369_macro_demo.txt

{***
 * Project : Macro Demo
 * App Name : #file:369_macro_demo.txt
 * Purpose : Demonstrates functions of macros in header
 * Date : 21/09/2010 - 14:56 - #date:01.06.2013 16:38:20
 * #path E:\maxbox\maxbox3\examples\
 * #file 369_macro_demo.txt
 * #perf-50:0:4.484
 * History : translate/implement June 2013, #name@max
 * : Sys demo for mX3, enhanced macros, #locs:149
 ***}

As you may know there's no simple solution put a macro because the step
of the preprocessor has to be the first to expand. So a macro is not part of
the source code and the best way is to set a macro always as a one liner
or somewhere else in comment.

All macros are marked with yellow. One of my favour is #locs: means lines
of code metric and you get always the certainty if something has changed
by the numbers of line. So the editor has a programmatic macro system
which allows the pre compiler to be extended by user code I would say
user tags. Below an internal extract from the help file All Functions List:
maxbox_functions_all.pdf

Some macros produce simple combinations of one liner tags but at least
they replace the content by reference in contrary to templates which just
copy a content by value.
After the end. of the code section you can set a macro without comment
signs so you can enlarge your documentation with version and time
information like:

 #tech:perf: 0:0:1.151 threads: 4 192.168.56.1 12:06:17 4.2.2.95

Or you put a macro behind a code-line, so this is not the end of the line, a
second time test is

 maxcalcF('400000078669 / 2000123')
 //#perf>0:0:1.163

and we get: 199987.740088485

maXbox3 568_U_BigFloatTestscript2.pas Compiled done: 6/18/2015

29×37×127^(-1)×179×15749^(-1)×2082607

 maxcalcF('29*37*(127^-1)*179*(15749^-1)*2082607');

>> 199987.740088485

 maxcalcF('29*37*(127^-1)*179*(15749^-1)*2082607');

//#tech>perf: 0:0:1.190 threads: 6 192.168.56.1 12:49:55 4.2.2.95
//>>> 199987.740088485

2

1.2 Extend with DLL

A DLL is a library, short for Dynamic Link Library, a library of executable
functions or data that can be used by a Windows or Linux application. This
is how we declare a function we want to use from a DLL:

Function OpenProcess2(dwDesiredAccess: DWORD;
 bInheritHandle: BOOL; dwProcessId:DWORD): THandle;
 External 'OpenProcess@kernel32.dll stdcall';

Suppose you want to use the function OpenProcess of the ‘kernel32.dll’.
All you have to do is to declare above statement and you get access to the
kernel! With external you made these functions available to callers
external to the DLL, so we must export them or at least say the function
we use is from External.
This means also to use the modifier stdcall because this is a C
convention. The function name OpenProcess2 is different from the original
name OpenProcess! This is an alias to prevent name conflicts or name it
you like because you do have conventions you are free to rename the
function in your script.
Or a function is missing, for example gettickcount64

No problem you search for the DLL and include it:

There's a template dll, write the word dll maybe at the beginning or
below of your code and press <Ctrl> j and it gets expanded to:

function MyGetTickCount: Longint;
 external 'GetTickCount@kernel32.dll stdcall';

Now we can change it:

function MyGetTickCount64: Longint;
 external 'GetTickCount64@kernel32.dll stdcall';

What about big integers in a DLL? For example you want to compute
fact(70), your calculator shows:

 fact(70) = 1.19785716699699e+100 or maxcalcF('70!')

1.19785716699699E100

or even more

1.1978571669969891796072783721689098736458938142546425857...
× 10^100
So find the right DLL as BigInt or BigDecimal but the maximum range on
Pascal or C depends on your operating system types, means nowadays an
int64 range is big but maXbox has some BigInt libs already.

3

1.3 Alias Naming

Most of the functions can have a second name for example:

Inc() and Inc1() //one parameter or two parameter

So if you cant run a function try the second one, for ex. Voice()-Voice2(),
inc() - inc1(), Rect – Rect2, Abs - AbsInt and many more.

Now that the "signed" functions with 1, 2, 3 and more at the end of the
function name is a workaround to provide the overload which maXbox
doesn't support.

Another way is to use a type extended, but the limitation is precision like

 Writeln(FloatToStr(Fact(70)))

 it only shows 1.2E+0100 or 1.19785716699698918E100

With a second one there's more parameters possible:

Function FloatToStr2(Value: Extended; Format: TFloatFormat;
Precision, Digits: Integer; FormatSettings: TFormatSettings):
string;

 Writeln(FloatToStr2(Fact(70),ffcurrency,18,6,formatSettings))

By the way with a BigInt Library you'll see the full range of Fact(70):

11978571669969891796072783721987892755536628009582789845319
680000000000000000

All examples can be found online:

maxbox4\examples\161_bigint_class_maxprove3.txt

http://www.softwareschule.ch/examples/161_bigint_class_maxprove3.txt

The call respectively the calculation goes like this:

function GetBigIntFact(aval: byte): string;
//call of unit mybigint
var mbRes: TmyBigInt; i: integer;
begin
 mbRes:= TMyBigInt.Create(1);
 try
 //multiplication of factor
 for i:= 1 to aval do
 mbRes.Multiply1(mbres, i);

4

http://www.softwareschule.ch/examples/161_bigint_class_maxprove3.txt

 Result:= mbRes.ToString;
 finally
 //FreeAndNil(mbResult);
 mbRes.Free;
 mbRes:= Nil;
 end;
end;

1.4 Console Capture DOS
I'm trying to move a part of SysTools to Win64. There is a certain class
TStDecimal which is a fixed-point value with a total of 38 significant digits.
The class itself uses a lot of ASM code.

function BigDecimal(aone: float; atwo: integer): string;
begin
 with TStDecimal.create do begin
 try
 //assignfromint(aone)
 assignfromfloat(aone) //2
 RaiseToPower(atwo) //23
 result:= asstring
 finally
 free
 end;
 end;
end;

But then I want to test some Shell Functions on a DOS Shell or command
line output. The code below allows to perform a command in a DOS Shell
and capture it's output to the maXbox console. The captured output is
sent “real-time” to the Memo2 parameter as console output in maXbox:

 srlist:= TStringlist.create;
 ConsoleCapture('C:\', 'cmd.exe', '/c dir *.*',srlist);
 writeln(srlist.text)
 srlist.Free;

But you can redirect the output srlist.text anywhere you want.
For example you can capture the output of a DOS console and input into a
textbox, or you want to capture the command start of demo app and input
into your app that will do further things.

 ConsoleCapture('C:\', 'cmd.exe', '/c ipconfig',srlist);
 ConsoleCapture('C:\', 'cmd.exe', '/c ping 127.0.0.1',srlist);

5

 It is important to note that some special events like /c java -version
must be captured with different parameters like /k or in combination.

Here's the solution with GetDosOutput():

 writeln('GetDosOut: '+GetDosOutput('java -version','c:\'));

or like the man-pages in Linux

 writeln('GetDosOut: '+GetDosOutput('help dir','c:\'));

1.5 Byte Code Performance

Intermediate representations such as byte-code may be output by
programming language implementations to ease interpretation, or it may
be used to reduce hardware and operating system dependence by
allowing the same code to run on different platforms. So you can share
your code as source in a normal text-file (*.txt) or as bytecocde (*.psb) to
gain speed or obfuscation.

In some cases, you may want to export or deliver a script with its byte-
code to store on removable media or to use on a different computer
without the source as a text-file. This is how you can do that:

1. You open a script and compile it before.
2. you go to /Options/Save Bytecode/ and the console writes:

-----PS-BYTECODE (PSB) mX4-----13:48:38 -----BYTECODE
saved as:
C:\maXbook\maxbox3\mX3999\maxbox3\examples\287_eventhandl
ing2_primewordcount.psb
----IFPS#

3. you load the byte-code by /Options/Load Bytecode...

IFPS#
mX3 byte code executed: 10.06.2015 13:53:20 Runtime:
0:0:1.577 Memoryload: 60% use ByteCode Success Message
of: 287_eventhandling2_primewordcount.psb

4. When testing is finished you send the byte-code to your client

But there are some restrictions to this procedure: You should avoid self
referencing commands like maxform1.color or memo1.text in your byte-
code. Also reflection calls, unsafe type casts or runtime type information
can fail.
So during development, we may want to create code for our own purposes
and then implicitly share them to test, deploy or reuse. But we don't really
want to go to an app- or store authority and get a signed certificate for

6

code signing, because that costs money and makes us dependent. If you
don't want to share the source code for property or security reasons you
can deliver the byte-code of the script which they can load and run in
maXbox like previously said. On the other side you want that others can
trust to your code so you deliver them simply the SHA1 hash of the file as
a signature:

5. You open the byte-code as a normal file in the editor (see below):

6. ..\examples\287_eventhandling2_primewordcount.psb File loaded

7. you go to /Program/Information and copy the SHA1 of file:
F01801AA105463EC6A937602AD2FA67DAA06C8D0

8. you send this number (fingerprint) to your client

9. Client loads the byte-code and compares the fingerprint to verify! By
meaning signature is just a hash. Real Code Signing uses certificate
associated with key pairs used to sign active content like a script or
an application explained above. The storage location is called the
certificate store. A certificate store often has numerous certificates,
possibly issued from a number of different certification authorities.

Let's have a look at some byte-code for fun.

go to -ptions "ave Bytecode and the console writes(  
+++++,-+ /&% !& ,- mX#+++++$34#8438+++++ /&    
% !& saved as4\maXboo5\maxbox3\mX3 (((\maxbox3\examples\ 
287_eventhandling2_primewordcount.psb +++++6F,-

1.6 Exception Handling

A few words how to handle Exceptions within maXbox:
Prototype:

procedure RaiseException(Ex: TIFException; const Msg: String);

Description:
Raises an exception with the specified message.
Example:

begin
 RaiseException(erCustomError,'Your message goes here');
// The following line will not be executed because of the
exception!
 MsgBox('You will not see this.', 'mbInformation', MB_OK);
end;

7

This is a simple example of a actual script that shows how to do try except
with raising a exception and doing something with the exception message.

procedure Exceptions_On_maXbox;

var filename,emsg:string;
begin
 filename:= '';
 try
 if filename = '' then
 RaiseException(erCustomError,

'Exception: File name cannot be blank');
 except
 emsg:= ExceptionToString(ExceptionType, ExceptionParam);

 //do act with the exception message i.e. email it or
 //save to a log etc

 writeln(emsg)
 end;
end;

 The ExceptionToString() returns a message associated with the
current exception. This function with parameters should only be called
from within an except section.

1.7 Config the Ini File
Test the script with F9 / F2 or press Compile.
As you already know the object we now step through the meaning of the
ini file maxboxdef.ini. On subsequent execution of maXbox, the ini values
are read in when the form is created and written back out in the OnClose
and other “in between” events.

 # ## In maXbox you can also start with read only mode (Options/Save
before Compile), so nothing will be write on the disk.

//*** Definitions for maXbox mX4 ***
[FORM]
LAST_FILE=E:\maxbox\maxbox3\examples\140_drive_typedemo.txt
 //history up to 10 files
FONTSIZE=14 //editor
EXTENSION=txt //default
SCREENX=1386 //window size
SCREENY=1077
MEMHEIGHT=350 //Console Output

8

PRINTFONT=Courier New //GUI Settings
LINENUMBERS=Y
EXCEPTIONLOG=Y //store exceptions in log file – menu

 Debug/Show Last Exceptions
EXECUTESHELL=Y //prevents execution of ExecuteShell() or

 ExecuteCommand() or WebScript
BOOTSCRIPT=Y //enabling load a boot script
MACRO=Y //put macros in your source header file
NAVIGATOR=Y //set the navigator listbox at the right

 side of code editor
MEMORYREPORT=Y //shows memory report on closing maXbox

[WEB]
IPPORT=8080
//for internal webserver – menu /Options/Add Ons/WebServer2
IPHOST=192.168.1.53
ROOTCERT=’filepathY’ //for use of HTTPS and certificates…
SCERT=’filepathY’
RSAKEY=’filepathY’

APP=C:\WINDOWS\System32\calc.exe
 //set path to an external app

MYSCRIPT=E:\mXGit39991\maxbox3\examples\330_myclock.txt
 //start script of menu /View/MyScript

VERSIONCHECK=Y //checks over web the version

The last entry VERSIONCHECK can enhance the load speed cause there's
no request to HTTP and also no sense for firewalls to signal an outgoing
socket call!

If you don't want execute scripts from the web you can stop this in the ini-
file maxboxdef.ini with N.
This is seen in the following figure.
LINENUMBERS=Y
EXCEPTIONLOG=Y
EXECUTESHELL=N
MEMORYREPORT=Y
BOOTSCRIPT=Y

The ini file format is still popular; many configuration files (such as
Desktop or Persistence settings file) are in this format. This format is
especially useful in cross-platform applications, where you can't always
count on a system Registry for storing configuration information. I never
was a friend of the Registry so you can also start maXbox from a stick.
if DownloadURLToFile('http://www.softwareschule.ch/maxboxnews.htm',
 exepath+'localwebstore.txt') then
 openDoc(exepath+'localwebstore.txt');

9

1.8 The Log Files

There are 2 log files a runtime log and an exception log:
using Logfile: maxboxlog.log , Exceptionlogfile: maxboxerrorlog.txt

New Session Exe Start C:\maXbox\tested
>>>> Start Exe: maXbox4.exe v4.0.2.80 2016-02-03 14:37:18
>>>> Start [RAM monitor] : Total=2147483647,
Avail=2147483647, Load=30% ; [Disk monitor] : Available to
user=671317413888, Total on disk=972076589056, Free total on
disk=671317413888 ; 2016-02-03 14:37:18

>>>> Start Script: C:\Program Files
(x86)\Import\maxbox4\examples\640_weather_cockpit6_1.TXT
2016-02-03 14:37:33 From Host: maXbox4.exe of
C:\maXbox\maxbox3\work2015\Sparx\
>>>> Stop Script: 640_weather_cockpit6_1.TXT
[RAM monitor] : (2147483647, 2147483647, 30%) Compiled+Run
Success! Runtime: 14:37:33.267

New Session Exe Start C:\Program Files(x86)\Import\maxbox4\
examples\640_weather_cockpit6_1.TXT
>>>> Start Exe: maXbox4.exe v4.2.2.95 2016-05-19 09:15:17
>>>> Start [RAM monitor] : Total=2147483647,
Avail=2147483647, Load=25% ; [Disk monitor] : Available to
user=675888001024, Total on disk=972076589056

Also possible to set report memory in script to override ini setting
procedure Set_ReportMemoryLeaksOnShutdown(abo: boolean)

1.9 Use Case Model

Also possible is to set for each script a use case diagram with the
extension *.uc. They are associated together by opening the script you can
open the model too.

So far so good now we ’ll open our two examples:

59_timerobject_starter2_uml_main.txt
59_timerobject_starter2_uml_form.uc

Among other items, during the pre-processor step the compiler is looking
for compiler directives or macros and processes them as they are
encountered.
After completing the tasks as directed, the compiler proceeds to its second
step where it checks for syntax errors (violations of the rules of the
language) and converts the source code into an object code that contains

10

file:///C:/Program

machine language instructions, a data area, and a list of items to be
resolved when he object file is linked to other object files.

At least there are two ways to install and configure your box into a
directory you want. The first way is to use the unzip command-line tool or
IDE, which is discussed above. That means no installation needed. Another
way is to copy all the files to navigate to a folder you like, and then simply
drag and drop another scripts into the /examples directory.

The only thing you need to backup is the ini file maxboxdef.ini with your
history or another root files with settings that have changed, otherwise the
unzip IDE overwrites it.

1.10 Open Tool API

At last we go back to the magic boot script which will be the key to modify
the IDE especially with the inbuilt SynEdit API (since V3.9.8.9). What does
it mean? It means you can change or rebuild your IDE not just by fixed
options or settings but also in a programmatic way in your boot script
without compilation!
Imagine you want to set a vertical red line on the gutter to the left:

 //memo1.Gutter.BorderColor:= clred; //---> reflection to box!
 //memo1.Gutter.ShowLineNumbers:= true; //---> reflection to box!

11

You simply put the line above on the boot script and make sure the ini file
has it set to Yes. BOOTSCRIPT=Y //enabling load a boot script

 “Wise men speak because they have something to say; Fools, because
they have to say something”. -Plato
Feedback @ max@kleiner.com

Literature: Kleiner et al., Patterns konkret, 2003, Software & Support
https://github.com/maxkleiner/maXbox3/releases

Here are 5 actions to make your computer more secure:

1.Use an antivirus program and keep it up to date
2.Do not open email messages from unknown sources or suspicious
 attachments even if you know the sender
3.Use a personal firewall
4.Keep your software up to date and enable Windows automatic updates
5.Use a pop-up blocker with your browser

1.11Appendix Study with BigInt Direct

// TODO: Copy a file in a connected share path
//this is 333^4096:

function GetBigIntDirect: string;
 //Unit mybigint
var mbResult: TMyBigInt;
 i: integer;
begin
 mbResult:= TMyBigInt.Create(333);
 try
 // Faktoren im Zaehler aufmultiplizieren ---> 2^12=4096
 for i:= 1 to 12 do begin
 mbResult.Multiply(mbresult, mbresult);
 //writeln(inttostr(i)+': '+mbresult.tostring);
 end;
 Result:= mbResult.ToString;
 finally

12

https://github.com/maxkleiner/maXbox3/releases
mailto:max@kleiner.com

 //FreeAndNil(mbResult);
 mbResult.Free;
 end;
end;

 TMyBigInt = class
 private
 Len: Integer;
 Value: AnsiString;
 procedure Trim;
 procedure Shift(k: Integer);
 procedure MultiplyAtom(Multiplier1: TMyBigInt; Multiplier2: Integer);
 public
 constructor Create(iValue: Integer = 0);
 procedure Add(Addend1, Addend2: TMyBigInt);
 procedure Multiply(Multiplier1, Multiplier2: TMyBigInt); overload;
 procedure Multiply(Multiplier1: TMyBigInt; Multiplier2: Integer); overload;
 function ToString: string;
 procedure CopyFrom(mbCopy: TMyBigInt);
 end;

13

	1.1 Command with Macros
	1.2 Extend with DLL
	1.3 Alias Naming
	1.4 Console Capture DOS
	1.5 Byte Code Performance
	1.6 Exception Handling
	1.7 Config the Ini File
	1.8 The Log Files
	1.9 Use Case Model
	1.10 Open Tool API
	1.11 Appendix Study with BigInt Direct

