o U W N

~J

11:
12:

13:

14:
15:
16:
17:
18:
19:
20:

21:
22
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41 :
42
43:
44

maXbox4 4.5.8.10 04/01/2018 16:48:58

N S N a

How to build a Neural Network

maXbox Starter 56 - Fast Artificial Neural Network

As you may know a neural network is for most of us a spooky word like a
brain teaser or machine learning. In my recent research I found the FANN
as a Fast Neural Network and I need this library to classify things.

The Fast Artificial Neural Network (FANN) library is an ANN library, which
can be used from C, C++, PHP, Python, Delphi and Mathematica and is still
a powerful tool for software developers. ANNs can be used in areas as
diverse as creating more fascinating simulation in computer games,
identifying objects or semantics in images and helping the weather
forecast or predict trends of the ever-changing climate.

ANNs apply the principle of function approximation by example, meaning
that they learn a function by looking at examples of this function. One of
the simplest examples is an ANN learning the XOR function (that I show
later), but it could just as easily be learning to determine a language
semantic of a written text.

In the following I want to show 2 solutions, one with the fannfloat.dll
and a second one with the same library from FANN (fann.sourceforge.net)
precompiled in maXbox V4. ! Small functions to build an independent
micro-service.

The class <TFannNetwork> encapsulates the Fast Artificial Neural Network
to prevent to much low level c-code stuff.

The script can be found at:
http://www.softwareschule.ch/examples/neuralnetwork. txt
pic: http://www.softwareschule.ch/images/wine.png
.. \examples\807 FANN XorSample2.pas

The DLL solution is for us the easiest one but it uncovers the dependency
of the DLL and explicitly steps behind. Also you do have the flexibility
to use larger values from files or databases. Our goal is to train and
learn a simple XOR function. First we need some types and definitions:

type
NN: TFannNetwork;
aoutput: TFann Type Array3;
TFann Type Array3 = Array[0..0] of single;
TFann Type Array3 = array of single; //}

NN:= TFannNetwork.create (self)
with NN do begin

{Layers.Strings := (

727

'37 Vl') }
Layers.add('2") //input
Layers.add('3"'") //hidden
Layers.add('1l") //output
LearningRate:=
ConnectionRate:=

TrainingAlgorithm:= taFANN TRAIN RPROP

ActivationFunctionHidden:= afFANN SIGMOID

ActivationFunctionOutput:= afFANN SIGMOID
end;

The FANN library supports several different training algorithms and the
default algorithm (FANN TRAIN RPROP) might not always be the best-suited
for a specific problem but in our case its best suited.

MAXBOX10 C:\maXbox\maxbox3\maxbox4\maxbox_starter56.txt
http://www.softwareschule.ch/maxbox.htm

hil
-~

45:
46:
47
48:
49:
50:
51:
52:
53:
54:
55:

56:
57:
58:
59:
60:
6l:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72
73:
74
75:
76:
77
78 :

79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94 :
95:
96:

maXbox4 4.5.8.10 04/01/2018 16:48:58

Other algos are:

FANN_TRAIN NAMES: array [0..3] of string =
(
'"FANN TRAIN INCREMENTAL',
'"FANN TRAIN BATCH',
'"FANN TRAIN RPROP',
'"FANN TRAIN QUICKPROP'
):

Artificial neurons are similar to their biological counterparts. They have
input connections which are summed together to determine the strength of
their output, which is the result of the sum being fed into an activation
function. Though many activation functions exist, the most common is the f
sigmoid activation function (afFANN SIGMOID), which outputs a number
between 0 (for low input values) and 1 (for high input values).

Next we want to train our network:

//Train the network
for e:=1 to 6000 do //Train ~30000 epochs

begin
for i:=0 to 1 do
begin
for j:=0 to 1 do
begin
inputs[0] :=1i;
inputs[1l]:=3;
outputs[0]:=1 Xor 7j;
mse:= NN.Train (inputs, outputs) ;
1blMse.Caption:= Format('s.4f', [mse]);
Application.ProcessMessages;
end;
end;
end;

When an ANN or tensorflow is learning to approximate a function, it is
shown examples of how the function works and the internal weights ¢ in the
ANN are slowly adjusted so as to produce the same output as in the
examples. The hope is that when the ANN is shown a new set of input
variables (testdata), it will give a correct output:

for i:=0 to 1 do
begin

for j:=0 to 1 do

begin
inputs[0] :=1i;
inputs[1l]:=3;
NN.Run4 (inputs, aOutput) ;
MemoXor.Lines.Add (Format ('%d XOR

o\

d = 5%t',[i,],a0utput[0]]));
end;
end;

var i,j: integer;
inputs: array [0..1] of single;
aoutput: TFann Type Array3;

Having too many weights can also be a slith problem, since learning can be
more difficult and there is also a chance that the ANN will learn specific
features of the input variables instead of general patterns which can be

extrapolated to other data sets. An output of our set is shown like this:

MAXBOX10 C:\maXbox\maxbox3\maxbox4\maxbox_starter56.txt
http://www.softwareschule.ch/maxbox.htm

hil
N~

97:
98:
99:
100:
101:
102:
103:

104:
105:
106:
107:
108:
109:
110:

111:

112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:

135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:
146:

147:

maXbox4 4.5.8.10 04/01/2018 16:48:58

0 XOR 0 = 0.01 Mean Square Error last: 0.0005
0 XOR 1 = 0.98
1 XOR 0 = 0.99
1 XOR 1 = 0.02

The more you repeat press on <Train> button the closer you get the XOR
values:

0 XOR

NN
.UV

0 0
0 XOR 1 = 0.99
1 XOR 0 = 0.99
1 XOR 1 = 0.02

The training is done by continually adjusting the weights so that the
output of the ANN matches the output in the training file. One cycle where
the weights are adjusted to match the output in the training file is
called an epoch. In this example the maximum number of epochs have been
set to 6000, and a status report is printed every cycle.

So I did write the cycle result (as mean square error) out to the console,

you can follow the approximation:

mse:= NN.Train (inputs, outputs) ;

1blMse.Caption:= Format ('$.4f', [mse]);

writeln(itoa(e) +': '"+Format ('%.4f', [mse]));
1: 0.1558 5997: 0.0001
1: 0.4369 5997: 0.0001
1: 0.3152 5997: 0.0002
1: 0.2959 5997: 0.0002
2: 0.2004 5998: 0.0001
2: 0.3854 5998: 0.0001
2: 0.2745 5998: 0.0002
2: 0.3282 5998: 0.0002
3: 0. 29 5999: 0.0001
3: 0.3618 5999: 0.0001
3: 0 5 5999: 0.0002
3: 0.3421 5999: 0.0002
4. 0.2335 6000: 0.0001
4. 0.3508 6000: 0.0001
4: 0.2503 6000: 0.0002
4: 0. /8 6000: 0.0002

When measuring how close an ANN matches the desired output, the mean
square error is usually used. The mean square error is the mean value of
the squared difference between the actual and the desired output of the
ANN, for individual training patterns. A small mean square error means a
close match of the desired output.

Lets summarize the steps in the script on behalf of a click:

procedure TFormlbtnBuildClick (Sender: TObject) ;

begin
NN.Build;
btnBuild.Enabled:=false; //1 NN.Build() ;
BtnTrain.Enabled:=true; //2 NN.Train (inputs,outputs) ;
btnRun.Enabled:=true; //3 NN.Run4 (inputs,aOutput) ;
MemoXOR.Lines.add ('spec def builded')

end;

First we build the dimensions of the neuronal (or do we say neural) net
with 2 input, 3 hidden and 1 output layer (neuron).

MAXBOX10 C:\maXbox\maxbox3\maxbox4\maxbox_starter56.txt
http://www.softwareschule.ch/maxbox.htm

hil
w ~

148:
149:
150:
151:
152:

153:
154:
155:
156:

157:
158:

159:
160:
1lo6l:
162:
163:
164:
165:
166:
167:
168:

169:
170:
171:

172:
173:
174:
175:
176:
177:

178:
179:
180:
181:
182:
183:
184:
185:
186:
187:
188:
189:

190:

191:

maXbox4 4.5.8.10 04/01/2018 16:48:58

Layers.add('2") //input neuron
Layers.add('3"'") //hidden
Layers.add('l") //output

Second we train the net, an advantage of such a training algorithm is that
the weights are being altered many times during each epoch and since each
training pattern alters the weights in slightly different directions.

Ei = wi*xi + b --> bias

And third we run it, after training, the ANN could be used directly to
determine which XOR function is in, but it is usually desirable to keep
training and execution on testdata in two different programs or code
blocks.

By the way the well known fannfloat.dll is statically linked, better
performance and stability as an advantage can be seen. Put the file

fannfloat.dll in your PATH.

{SIF Defined (FIXEDFANN) }

const DLL FILE = 'fannfixed.dll';
{SELSEIF Defined (DOUBLEFANN) }
const DLL FILE = 'fanndouble.dll';
{SELSE}
const DLL FILE = 'fannfloat.dll';
{SIFEND}
function fann run(ann: PFann; input: PFann Type): Pfann type array;

cdecl;
function fann run; external DLL FILE;

If you want to use Fixed Fann or Double Fann as DLL FILE please uncomment
the corresponding definition in your compiler. As default fann.pas uses
the <fannfloat dll>.

I did also test this on a Ubuntu 16 Mate with Wine 2.4 and IT works too!
pic: 675 virtualbox ubuntu sha256 advapi32dll.png
http://www.softwareschule.ch/images/virtualbox ubuntu advapi32dll.png

There is also no proof that every output of common hash functions in
machine learning is reachable for some input, but it is expected to be
true. No method better than brute force is known to check this, and brute
force is entirely impractical.

Ref:
http://fann.sourceforge.net
http://leenissen.dk/fann/wp/language-bindings/
Neural Networks Made Simple: Steffen Nissen
http://fann.sourceforge.net/fann en.pdf
http://www.softwareschule.ch/examples/neuralnetwork. txt
https://maxbox4.wordpress.com
https://www. tensorflow.org/

https://sourceforge.
net/projects/maxbox/files/Examples/13 General/807 FANN XorSampleZ.
pas/download

https://sourceforge.
net/projects/maxbox/files/Examples/13 General/809 FANN XorSample traindata.
pas/download

MAXBOX10 C:\maXbox\maxbox3\maxbox4\maxbox_starter56.txt
http://www.softwareschule.ch/maxbox.htm T:7

193:
194:
195:
196:
197:
198:
199:
200:
201:
202:
203:
204 :
205:
206:
207 :
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227 :
228:
229:
230:
231:
232:
233:

234:

235:
236:

237:

238:
239:
240:
241 :
242 :
243:
244 :

245:

246:

247 :

maXbox4 4.5.8.10 04/01/2018 16:48:58

Doc: TFannNetwork Lib Interface: (@author Mauricio Pereira Maia
of unit FannNetwork;

TFannNetwork = class (TComponent)
private
ann: PFann;
pBuilt: boolean;
players: TStrings;
plLearningRate: Single;
pConnectionRate: Single;
plearningMomentum: Single;
pActivationFunctionHidden: Cardinal;
pActivationFunctionOutput: Cardinal;
pTrainingAlgorithm: Cardinal;

procedure Setlayers (const Value: TStrings);

procedure SetConnectionRate (const Value: Single);
function GetConnectionRate(): Single;

procedure SetlearningRate (Const Value: Single);
function GetLearningRate(): Single;

procedure SetlearningMomentum (Const Value: Single);
function GetLearningMomentum(): Single;

procedure SetTrainingAlgorithm(Value: TTrainingAlgorithm) ;
function GetTrainingAlgorithm(): TTrainingAlgorithm;

procedure SetActivationFunctionHidden (Value: TActivationFunction);
function GetActivationFunctionHidden () : TActivationFunction;

procedure SetActivationFunctionOutput (Value: TActivationFunction);
function GetActivationFunctionOutput (): TActivationFunction;

function GetMSE () : Single;

function EnumActivationFunctionToValue (Value: TActivationFunction) :
Cardinal;

function ValueActivationFunctionToEnum (Value: Cardinal) :
TActivationFunction;

function EnumTrainingAlgorithmToValue (Value: TTrainingAlgorithm) :
Cardinal;

function ValueTrainingAlgorithmToEnum(Value: Cardinal) :
TTrainingAlgorithm;

public
constructor Create (Aowner: TComponent); override;
destructor Destroy(); override;
procedure Build() ;
procedure UnBuild();

function Train (Input: array of fann type; Output: array of fann type):

single;

procedure TrainOnFile (FileName: String; MaxEpochs: Cardinal;
DesiredError: Single);

procedure Run (Inputs: array of fann type; var Outputs: array of
fann type) ;

procedure SaveToFile (FileName: String);

MAXBOX10 C:\maXbox\maxbox3\maxbox4\maxbox_starter56.txt
http://www.softwareschule.ch/maxbox.htm

hil
o~

248:
249:
250:

251:
252:
253:
254:
255:
256:
257 :
258:
259:
260:
261:
262:
263:
264:
265:

266:
267:
268:
269:
270:
271:
272:
273:

274 :
275:
276:
277 :
278:

279:
280:
281:
282:
283:

284:
285:
286:
287:
288:
289:
290:
291:

292:
293:

294:
295:
296:

297 :
298:

299:
300:

maXbox4 4.5.8.10 04/01/2018 16:48:58

procedure LoadFromFile (Filename: string);

// adapt to maXbox4 for strong typing

procedure Run4 (Inputs: array of fann type; var Outputs:
TFann Type Array3);

Pointer to the Fann object.
If you need to call the fann library directly and skip the Component.

property FannObject: PFann read ann;
published

Network Layer Structure. Each line need to have the number of neurons

of the layer.

2

4

1

will make a 3 layered network with 2 input neurons, 4 hidden
neurons

and 1 output neuron.

property Layers: TStrings read PLayers write SetLayers;

property LearningRate: Single read GetLearningRate write
SetLearningRate;
Network Connection Rate. See the FANN docs for more info.
property ConnectionRate: Single read GetConnectionRate write
SetConnectionRate;
Network Learning Momentum. See the FANN docs for more info.
property LearningMometum: single read GetLearningMomentum write
SetLearningMomentum;
Fann Network Mean Square Error. See the FANN docs for more info.

property MSE: Single read GetMSE;

property TrainingAlgorithm: TTrainingAlgorithm read
GetTrainingAlgorithm write SetTrainingAlgorithm;

Activation Function used by the hidden layers. See FANN docs for more

property ActivationFunctionHidden: TActivationFunction read
GetActivationFunctionHidden write SetActivationFunctionHidden;

MAXBOX10 C:\maXbox\maxbox3\maxbox4\maxbox_starter56.txt
http://www.softwareschule.ch/maxbox.htm

hil
o~

301:

302:
303:

304:
305:
306:
307:
308:
309:

310:

maXbox4 4.5.8.10 04/01/2018 16:48:58

Activation Function used by the output layers. See the FANN docs for
more info.

property ActivationFunctionOutput: TActivationFunction read
GetActivationFunctionOutput write SetActivationFunctionOutput;

end;
Performance Abstract:

While training the ANN is often the big time consumer, execution can
often be more time consuming, especially in systems where the ANN needs to
be executed hundreds of times per second or if the ANN is very large. For
this reason, several measures can be applied to make the FANN library
execute even faster than it already does.

One method is to change the activation function to use a stepwise linear
activation function, which is faster to execute, but which is also a bit
less precise. It is also a good idea to reduce the number of hidden
neurons if possible, since this will reduce the execution time. from
<fann en.pdf>

MAXBOX10 C:\maXbox\maxbox3\maxbox4\maxbox_starter56.txt
http://www.softwareschule.ch/maxbox.htm

hil
~~

