
maXbox Starter 45

Work with maXbox Robotics

1.1 Command with maXbox Operation Server

The Robots industry is promising major operational benefits, although no
one is quite sure where robots and the Industrial Internet of Things (IIoT)
will take manufacturing. IoT represents a closing of the gap between
production and IT and is seen as the next big step for automation.

In reality, the Internet of Things can mean anything to anybody. For
example, in the domestic context, it can involve connecting household
appliances – even vehicles or robots - to a home hub and having some
kind of central intelligence control how the house or robots operates.
Try it first in maXbox with a simulation on Menu /Options/OpenGL mX/
Then change Torso animation/direction and Head...

Be aware that you need the subdirectory /exercices/Model/ of maXbox3
to work with OpenGL. Here you find resources and a configuration file for
your own study.
Please read also the Tutorial 38 concerning 3D Lab, simply because robots
live in 3D. We can program robots in G-code. In fundamental terms, G-
code is a language in which people tell computerized machine tools or
robots what to make and how to make it. The "how" is defined by
instructions on where to move to, how fast to move, and along what path
to move. For example:

G1 X0.0 Y0.0 Z0.0
G1 X10.0 Y10.0 Z0.0 F1000

These instructions can then be sent to a machine that will interpret these
lines and execute them one by one. The G Code instructions frequently
have an X, Y and Z coordinate, these are the points in 3D robot space that
the for example head will move in. We can also develop this with Turtle in
maXbox/Arduino these steps to test the behaviour.

Today we step through this robot simulation to find him its way along a
line. As you my know we script it in maXbox4. This tool is great for fast
coding but also provides mechanism for extending your functions and
quality with checks and tests.
The script is called: examples\667_URobo2_tutor45.pas

2

First I want to show how we track the blue line for the robot:

procedure FormMouseMove(Sender: TObject; Shift: TShiftState; X, Y: Integer);
{User moved mouse}
begin
 If drawing then begin
 form1.canvas.lineto(x,y);
 sleep(sleepms);
 inc(count);
 if count>length(saved) then setlength(saved,length(saved)+maxpoints);
 saved[count]:= point(x,y);
 end;
end;

Its done with the mousemove event which also remembers the speed of the
tracking! Means the slower we paint the more points to track we have (like
slow-motion). The same goes for the robot and its done by measuring
milliseconds as the resolution of the track. The last point measured is
finished by a mouseup event:

procedure FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
{User released the button}
begin
 Drawing:= false;
 Robo.left:= saved[1].x-robo.Width div 2;
 Robo.top:= saved[1].y-Robo.Height div 2;

end;

The robo itself is just a shape object.
A canvas or shape object’s Brush property determines what kind of color
and pattern the canvas uses for filling graphical shapes and backgrounds.
Controls also specify an additional brush in their Brush properties, which
they use for painting their backgrounds.

֎֎֍҉
Challenging domains such as robot-assisted search and rescue, operations
in space require humans to interact with robots.
These interactions may be in the form of supervisory control, which
connotes a high human involvement with limited robot automation (e.g.,
semi-autonomy, where the robot is truly autonomous for portions of the
task or mixed-initiative systems, where the robot and human are largely
interchangeable.

The interactions between humans and robots are often interchangeably
referred to as “coordination” or “collaboration”.

3

The application of a script to interleave human and robot coordination is
both logical and natural. Scripts simplify the relationship between human
and robot making the task comprehensible to both novice and expert
system users.

procedure StartBtnClick(Sender: TObject);
{User clicked start}
var i:integer;
 drawtime:integer;
 startcount,stopcount:int64;
begin
 for i:= 2 to count do begin
 {put center of robo on the point}
 Robo.left:= saved[i].x-Robo.width div 2;
 Robo.top:= saved[i].y-Robo.height div 2;
 queryperformanceCounter(startcount);{Get time before we repaint}
 application.processmessages;
 queryPerformanceCounter(stopcount);{Get time after repaint}
 drawtime:= (stopcount-startcount) div freq; {Compute ms to repaint}
 writeln('test freq ms: '+itoa(drawtime))
 sleep(max(0,sleepms-drawtime)); {wait whatever time is left, if any}
 end;

end;

The ability to simplify a task as a series of simple steps is necessary for
this comprehension. The available or possible actions for the human
operator at any particular time are clear in the script because of the GUI.
This approach can be applied to any task, with any level of human-robot
coordination.

Due to the highly proprietary nature of robot software, most producers of
robot hardware also provide their own software. While this is not unusual
in other automated control systems, the lack of standards of programming
methods for robots does pose certain challenges.
For example, there are over 30 different manufacturers of industrial
robots, so there are also 30 different robot programming languages
required.
Fortunately, there are enough similarities between the different robots
that it is possible to gain a broad-based understanding of robot
programming without having to learn each manufacturer's proprietary
language.

Another interesting approach is worthy of mention. All robotic applications
need or explore parallelism and event-based programming.
Robot Operating System is an open-source platform for robot
programming using Python and C++. Java, Lisp, Lua, Pascal and Pharo are
supported but still in experimental stage.

https://en.wikipedia.org/wiki/Robot_Operating_System

4

https://en.wikipedia.org/wiki/Robot_Operating_System

Another example is the tower of hanoi which can be solved for example by
Lego mindstorm or other arduino frameworks:

The script is called: examples\712_towerofhanoi_animation.pas

Programming errors represent a serious safety consideration, particularly
in large industrial robots. The power and size of industrial robots mean
they are capable of inflicting severe injury if programmed incorrectly or
used in an unsafe manner. Due to the mass and high-speeds of industrial
robots, it is always unsafe for a human to remain in the work area of the
robot during automatic operation.
A few following concepts should improve this safety:

• Console Capture
• Exception Handling
• Logfiles

1.2 Console Capture DOS
I'm trying to move a part of SysTools to Win64. There is a certain class
TStDecimal which is a fixed-point value with a total of 38 significant digits.
The class itself uses a lot of ASM code.

function BigDecimal(aone: float; atwo: integer): string;
begin
 with TStDecimal.create do begin
 try
 //assignfromint(aone)
 assignfromfloat(aone) //2

5

 RaiseToPower(atwo) //23
 result:= asstring
 finally
 free
 end;
 end;
end;

But then I want to test some Shell Functions on a DOS Shell or command
line output. The code below allows to perform a command in a DOS Shell
and capture it's output to the maXbox console. The captured output is
sent “real-time” to the Memo2 parameter as console output in maXbox:

 srlist:= TStringlist.create;
 ConsoleCapture('C:\', 'cmd.exe', '/c dir *.*',srlist);
 writeln(srlist.text)
 srlist.Free;

But you can redirect the output srlist.text anywhere you want.
For example you can capture the output of a DOS console and input into a
textbox, or you want to capture the command start of demo app and input
into your app that will do further things.

 ConsoleCapture('C:\', 'cmd.exe', '/c ipconfig',srlist);
 ConsoleCapture('C:\', 'cmd.exe', '/c ping 127.0.0.1',srlist);

 It is important to note that some special events like /c java -version
must be captured with different parameters like /k or in combination.

Here's the solution with GetDosOutput():

 writeln('GetDosOut: '+GetDosOutput('java -version','c:\'));

or like powercfg or the man-pages in Linux

 writeln('GetDosOut: '+GetDosOutput('help dir','c:\'));
GetDosOutput('powercfg energy -output

 c:\maxbox\osenergy.htm','c:\')

1.3 Exception Handling

A few words how to handle Exceptions within maXbox:
Prototype:

procedure RaiseException(Ex: TIFException; const Msg: String);

Description:

6

file:///c:/

Raises an exception with the specified message.
Example:

begin
 RaiseException(erCustomError,'Your message goes here');
// The following line will not be executed because of the
exception!
 MsgBox('You will not see this.', 'mbInformation', MB_OK);
end;

This is a simple example of a actual script that shows how to do try except
with raising a exception and doing something with the exception message.

procedure Exceptions_On_maXbox;

var filename,emsg:string;
begin
 filename:= '';
 try
 if filename = '' then
 RaiseException(erCustomError,

'Exception: File name cannot be blank');
 except
 emsg:= ExceptionToString(ExceptionType, ExceptionParam);

 //do act with the exception message i.e. email it or
 //save to a log etc

 writeln(emsg)
 end;
end;

 The ExceptionToString() returns a message associated with the
current exception. This function with parameters should only be called
from within an except section.

1.4 The Log Files

There are 2 log files a runtime log and an exception log:
using Logfile: maxboxlog.log , Exceptionlogfile: maxboxerrorlog.txt

New Session Exe Start C:\maXbox\tested
>>>> Start Exe: maXbox4.exe v4.0.2.80 2016-02-03 14:37:18
>>>> Start [RAM monitor] : Total=2147483647,
Avail=2147483647, Load=30% ; [Disk monitor] : Available to
user=671317413888, Total on disk=972076589056, Free total on
disk=671317413888 ; 2016-02-03 14:37:18

7

>>>> Start Script: C:\Program Files
(x86)\Import\maxbox4\examples\640_weather_cockpit6_1.TXT
2016-02-03 14:37:33 From Host: maXbox4.exe of
C:\maXbox\maxbox3\work2015\Sparx\
>>>> Stop Script: 640_weather_cockpit6_1.TXT
[RAM monitor] : (2147483647, 2147483647, 30%) Compiled+Run
Success! Runtime: 14:37:33.267

New Session Exe Start C:\Program Files(x86)\Import\maxbox4\
examples\640_weather_cockpit6_1.TXT
>>>> Start Exe: maXbox4.exe v4.2.2.95 2016-05-19 09:15:17
>>>> Start [RAM monitor] : Total=2147483647,
Avail=2147483647, Load=25% ; [Disk monitor] : Available to
user=675888001024, Total on disk=972076589056

After completing the tasks as directed, the compiler proceeds to its second
step where it checks for syntax errors (violations of the rules of the
language) and converts the source code into an object code that contains
machine language instructions, a data area, and a list of items to be
resolved when he object file is linked to other object files.

At least there are two ways to install and configure your box into a
directory you want. The first way is to use the unzip command-line tool or
IDE, which is discussed above. That means no installation needed. Another
way is to copy all the files to navigate to a folder you like, and then simply
drag and drop another scripts into the /examples directory.
The only thing you need to backup is the ini file maxboxdef.ini with your
history or another root files with settings that have changed

You simply put the line above on the boot script and make sure the ini file
has it set to Yes. BOOTSCRIPT=Y //enabling load a boot script

8

file:///C:/Program

 “Wise men speak: Hand made by robots.
Feedback @ max@kleiner.com

Literature: Kleiner et al., Patterns konkret, 2003, Software & Support

https://github.com/maxkleiner/maXbox3/releases

https://en.wikipedia.org/wiki/Robot_software

Here are 5 actions to make your computer more secure:
1.Use an antivirus program and keep it up to date
2.Do not open email messages from unknown sources or suspicious
 attachments even if you know the sender
3.Use a personal firewall
4.Keep your software up to date and enable Windows automatic updates
5.Use a pop-up blocker with your browser

EKON 20 Input for Robots & Components

1. AsyncPRO, 2. BigInteger,

3. Hotlog, 4. WMILib,

5. StBarCode, 6. XMLUtils,

7. LockBox, 8. cX509Certificate,

9. OpenGL, 10. WaveUnit,

11. OpenSSL, 12. Kronos,

13. HiResTimer, 14. Kmemo,

15. BigDecimals, 16. SynEdit,

17. SFTP, 18. Sensors,

19. PasScript, 20. ALJSON

1.5 Appendix External links External links
• "The Basics - Robot Software". Seattle Robotics Society.
• G.W. Lucas, "Rossum Project".
• "Mobile Autonomous Robot Software (MARS)". Georgia Tech Research Corporation.
• "Tech Database". robot.spawar.navy.mil.
• Adaptive Robotics Software at the Idaho National Laboratory
• A review of robotics software platforms Linux Devices.
• ANSI/RIA R15.06-1999 American National Standard for Industrial Robots and Robot

Systems - Safety Requirements (revision of ANSI/RIA R15.06-1992)

1.6 References
• O. Nnaji, Bartholomew. Theory of Automatic Robot Assembly and Programming (1993

ed.). Springer. p. 5. ISBN 978-0412393105. Retrieved 8 February 2015.
• "Robot programming languages". Fabryka robotów. Retrieved 8 February 2015.

9

http://www.robotics.org/bookstore-prod.cfm?category_id=118&product_id=269/
http://www.robotics.org/bookstore-prod.cfm?category_id=118&product_id=269/
http://fabryka-robotow.pl/2015/01/programming-languages-to-control-robot/
https://en.wikipedia.org/wiki/Special:BookSources/978-0412393105
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://books.google.pl/books?id=poAIavAqj68C&lpg=PA5&dq=robot%20programming%20VAL&hl=pl&pg=PA5#v=onepage&q=robot%20programming%20VAL&f=false
http://archive.is/20130127182004/http://www.linuxdevices.com/articles/AT5739475111.html
http://www.inl.gov/adaptiverobotics
http://robot.spawar.navy.mil/home.asp?item=robotsoftware
https://en.wikipedia.org/wiki/Georgia_Tech_Research_Corporation
http://www-static.cc.gatech.edu/ai/robot-lab/MARS/
http://rossum.sourceforge.net/
http://www.seattlerobotics.org/encoder/aug97/basics.html
https://en.wikipedia.org/wiki/Robot_software
https://github.com/maxkleiner/maXbox3/releases
mailto:max@kleiner.com

	1.1 Command with maXbox Operation Server
	1.2 Console Capture DOS
	1.3 Exception Handling
	1.4 The Log Files
	1.5 Appendix External links External links
	1.6 References

