
Time is on my side

An Introduction to World Time Routines V2.1

1.1 We program time

As you may know the RTL (Runtime Library) includes global routines, utility classes
such as those that represent streams and lists and a lot of time routines.
Those routines for working with date/time values (defined in the System.SysUtils
and System.DateUtils units) deserve a closer look.
Let's start with a common mistake to get the UTC time. Greenwich Mean Time (GMT)
is often interchanged or confused with Coordinated Universal Time (UTC). But GMT
is a time zone and UTC is a time standard.
Therefore UTC is not a time zone, but a time standard that is the basis for civil time
and time zones worldwide. This also means that no country or territory officially uses
UTC as a local time.
In the language of a function GMT and UTC share the same current time in practice
so we make the proof of the pudding:

function NowUTC: TDateTime;
var
 system_datetime: TSystemTime;
begin
 GetSystemTime(system_datetime);
 Result:= SystemTimeToDateTime(system_datetime);
end;

The result is: UTC: 05/12/2015 15:18:08
And the same goes with GMT

function GMTNow: TDateTime;
begin
 Result:= LocaleToGMT(Now);
end;

Again the result is: 05/12/2015 15:18:08

This is based on my local time of 05/12/2015 16:18:08.
But what about daylight saving and my local time plus 1 hour? Neither UTC nor GMT
ever change for daylight saving time (DST). However, some of the countries that use
GMT (officially used in some European and African countries) switch to different time
zones during their DST period for example England itself.
We do also update or calculate our locale time relative to GMT with the help of
TTimeZoneInformation.

This Windows API function GetTimeZoneInformation returns this useful record,
TTimeZoneInformation, with most you want to know especially the bias:

• Bias - the offset in minutes to add to local time to get UTC (Universal Time
Coordinated, also/formerly known as GMT, Greenwich Mean Time).

• Time zone name (array of char)
• Daylight savings name (array of char)
• Date and time for start of Daylight savings time
• Daylight savings time adjustment amount

GetTimeZoneInformation() also returns a data structure (a record) that contains
the current time-zone settings, and the information needed to convert between local
and UTC times:

function GetGMTBias: Integer;
var
 ainfo: TTimeZoneInformation;
 mode: DWord;
begin
 mode:= GetTimeZoneInformation(ainfo);
 Result:= ainfo.Bias;

2

 case mode of
 TIME_ZONE_ID_INVALID:
 RaiseLastOSError;
 TIME_ZONE_ID_STANDARD:
 Result:= Result + ainfo.StandardBias;
 TIME_ZONE_ID_DAYLIGHT:
 Result:= Result + ainfo.DaylightBias;
 end;
end;

function LocaleToGMT(const Value: TDateTime): TDateTime;
begin
 Result:= Value + (GetGMTBias/MinsPerDay);
end;

We now have enough information to convert local times to UTC/GMT, and vice versa.
As you can see UTC also formerly known as GMT is interchangeable but You should
store all your dates as UTC in a DB or another persistence layer. Your server's time
zone is really irrelevant to this problem. It's the conversion from UTC to the time zone
of your clients that should be your concern!
As a rule: UTC = Local time + Bias
The bias is the difference, in minutes, between UTC and local time.
Who cares about changes in time zones? Your users might. Consider the relatively
trivial example of a telephone dialer or a remote control app: wouldn't it be nice and
helpful if users were notified of the local time when calling a phone number outside of
the local calling area?
If all your application needs is the current UTC or local time, we could simply call the
Win32 API procedures GetSystemTime or GetLocalTime. These functions return
a data structure of type SystemTime:

type

SystemTime = record

wYear: Word;

wMonth: Word;

wDayOfWeek: Word;

wDay: Word;

wHour: Word; wMinute: Word; wSecond: Word;

wMilliseconds: Word;

end;

To obtain your local time here in Europe, you need to subtract (see below) a certain
number of hours from UTC depending on how many time zones you are away from
Greenwich (England). A table or list can show the standard difference from UTC time
to local time.

3

Besides, mobile computing is so pervasive, a user might easily work in multiple time
zones in one single day.

function GMTToLocale(const Value: TDateTime): TDateTime;
begin
 Result:= Value - (GetGMTBias / MinsPerDay);
end;

Example Output of my Time Zone:
Current Bias from local to UTC: -60 minutes
 (UTC = Local time + Bias)
Time zone name: W. Europe Standard Time
Daylight savings starts: March 29 02:00 am
Daylight savings ends: October 25 03:00 am
Daylight savings name: W. Europe Summer Time
Daylight savings bias: -60 minutes
We are not currently in the daylight savings time period!

The switch to daylight saving time does not affect UTC. It refers to time on the zero or
Greenwich meridian, which is not that adjusted to reflect changes either to or from
Daylight Saving Time. Now we switch to local time with another API function:

function NowLocalTime: TDateTime;
var
 system_datetime: TSystemTime;
begin
 GetLocalTime(system_datetime);
 Result:= SystemTimeToDateTime(system_datetime);
end;

We simply use the getLocalTime function and format the time:

writeln(FormatDateTime('dd-mmm-yyyy hh:nn:ss', NowLocal()));

With this function we return a string representation of DateTime.

Now its easy to understand how the now function works using GetLocalTime or
GetCurrentTime:

function emulateNow: TDateTime;
var ST: SystemTime;

DT: TDateTime;
begin
//Get UTC with GetSystemTime().
 GetLocalTime(ST);
 with ST do

4

 DT:= EncodeDate(wYear, wMonth, wDay) +
 EncodeTime(wHour, wMinute, wSecond,wMilliseconds);
 result:= DT;
end;

If you need to convert only from UTC to ONE local time you only need to apply the
rules for that local time. Most rules are very easy if the time is after year ~1970. Most
local times in Europe only have 2 rules, one to enter daylight saving and one to exit
from it.
Some types of programs are vitally concerned with time-zone changes, particularly
technical programs, or those relating to navigation and astronomy, to name a few.

So we should rename the theory of relativity to law of relativity cause it works!

 A bref history of time routines End.

1.2 Time Zones Table

We have seen there's a description for standard time. For example, "EST" could
indicate Eastern Standard Time or W for W. Europe Standard Time. The string will be
returned unchanged by the GetTimeZoneInformation function. This string can be
empty. But where's the whole world time zone information which you can use for a
world clock?
Right, settings for each time zone are stored in the following registry key:

Const
 SKEY_NT = '\SOFTWARE\Microsoft\

Windows NT\CurrentVersion\Time Zones\';

Each time zone entry includes several registry values which we can catch in a loop:

procedure TXRTLTimeZones_Refresh;
 var
 osV: TOSVERSIONINFO;
 TimeZonesKey: string;
 KeyNames: TStringList;
 Registry: TRegistry;
 i: Integer;
 FItems: TStringlist; //TObjectlist;
 aTimeZone: TXRTLTimeZone;
 FIndex: DWORD;
 begin
 //FItems.Clear;
 osV.dwOSVersionInfoSize:= SizeOf(osV);
 GetVersionEx(osV);
 if osV.dwPlatformId = VER_PLATFORM_WIN32_NT then
 TimeZonesKey:= SKEY_NT
 else
 TimeZonesKey:= SKEY_9X;

5

 Registry:= Nil;
 KeyNames:= Nil;
 try
 Registry:= TRegistry.Create;
 Registry.RootKey:= HKEY_LOCAL_MACHINE;
 if not Registry.OpenKeyReadOnly(TimeZonesKey) then Exit;
 KeyNames:= TStringList.Create;
 Registry.GetKeyNames(KeyNames);
 for i:= 0 to KeyNames.Count - 1 do begin
 if not Registry.OpenKeyReadOnly(TimeZonesKey + KeyNames[i])

 then Continue;
 writeln(Registry.ReadString('Display')+' --->');
 writeln(Registry.ReadString('Dlt') + ' :

 '+Registry.ReadString('Std'));
 writeln(' ');
 end;
 //fitems.Sort;
 finally
 Registry.CloseKey;
 Registry.Free;
 Registry:= NIL;
 KeyNames.Free;
 KeyNames:= NIL;
 //FreeAndNil(Registry);
 end;
 end;

Output: (UTC+09:30) Darwin --->
AUS Central Summer Time : AUS Central Standard Time

You can find this script at:
http://www.softwareschule.ch/examples/322_timezones2.TXT

1.3 Time machine

Programmers never die, they just GOSUB without return. You may also know, in the
beginning was nothing which exploded ;). So let the jokes aside. Our last step is an
eternal clock that goes back in the time like I said before: we code a time machine.
So this piece of code can then be translated and run on various platforms and
frameworks as well. So what’s the solution to run this time forever? Answer: a do
forever loop or at least one hour. With the call of another function we set the time one
hour back in every second (sign: –i).

18 for i:= 1 to 3600 do begin

19 Writeln(TEXTOUT + TimeToStr(AddHours(Time,-i)));

20 Delay(1000)

21 end;

6

http://www.softwareschule.ch/examples/322_timezones2.TXT

Be careful, the loop counter 3600 will last long, so change it step by step on your own
experience. The clock goes one hour back into the past every second, but the
seconds tick forward like a normal clock. In the film “back to the future” they call it the
flux-comparator.

If you want to stop or break a loop, just override the loop counter in line 18 and
recompile (F9) it during the execution!

Repeat until Key-pressed is also possible with the snippet:

repeat {for it:= 1 to n do} until isKeypressed;
//keypress in output window below (memo2 as console)

When you call the function AddHours that takes two argument and returns another
time, then we say the function call TimeToStr(AddHours(Time,-i)) is nested. A
nested call contains other functions within a statement. Let me explain:
First we call the time function, the result we pass to the AddHours function its result
is passed to the TimeToStr function and the whole we pass again to Writeln!

When we want to travel back to the past, maybe in the year of 1759, further
information is missing. Right, there is no date. Easier done than said ;-).

18 for i:= 1 to round(Power(2,4)) do begin

19 Writeln(TEXTOUT + DateTimeToStr(AddHours(Now,-i)));

Did you see the difference? We replaced the Time function with the Now function and
the string converter to DateTimeToStr. And with Power big numbers are possible
(Power is like 2^4). Now we’re ready to go back to middle age.

How can you accelerate your time machine? One hour back per second
takes to much time, simply the loop must step faster.
You got it; we change the parameter of the delay procedure:

20 Delay(10);

Remember: The clock rate is still the same, but our time machine can go faster to the
past. The time1 is flushing by with this speed; the calculation of how many lines we
get is also interesting:

Suppose we have Power(2,12) as the for counter limit, how many lines we get?
Answer: 2^12 = 4096.
And the next by Power(2,30) could be also of interest, but its huge and your app
runs long!:
Can you imagine where in the past we are landing, middle age or stone age or
maybe far out of our history line?
The calculation is simple: (2^30/24)/365 is rounded to 122573 years. This would be
Stone Age! How can you do that in maXbox: 2^30 / (24*365) is another solution.

 Writeln(intToStr(round(Power(2,30)/24/365)));

1Time is just measuring movement of our solar system
7

We come closer to the end and had to re-factor just one thing:

 for i:= 1 to round(Power(2,N)) do begin

 Writeln(IntToStr(i)+TEXTOUT +

DateTimeToStr(AddHours(Now,-i)));

 Delay(SN); //speed of time machine

 end;

As you can see I introduced two parameters to be more flexible, the counter limit N
and the speed of time machine SN.
Means also 2 more variables to add in your code.

By the way: DYNAMIC_TIME_ZONE_INFORMATION specifies settings for a time
zone and dynamic daylight saving time. For more information about the Dynamic
DST key, see DYNAMIC_TIME_ZONE_INFORMATION and the special function
GetDynamicTimeZoneInformation.

Both StandardName and DaylightName are localized according to the current user
default UI language.

So far we have learned something about time routines and the difference between a
UTC and a GMT. Now its time to reflect over those used functions:

Function Explanation and Purpose…

TimeStampToMSecs Convert Timestamp to number of
millicseconds

DecodeTime() Decode DateTime to hours, minutes and
seconds

DateTimeToStr() Converts a variable of type TDateTime to a
string.

AddHours() Change the hours of a TDateTime
function.

Now Returns the current date and time.

EncodeTime() Encode hours, minutes and seconds to
DateTime

SystemTimeToDateTime Convert system time to datetime

GetTimeZoneInformation Returns a timezone relevant record

If you want to look at the whole script you can find the file at:

http://www.softwareschule.ch/examples/650_time_routines.txt

A least a piece of code which makes UTC time for further studies:

function MakeUTCTime(DateTime: TDateTime): TDateTime;
var TZI: TTimeZoneInformation;

8

http://www.softwareschule.ch/examples/650_time_routines.txt

begin
 case GetTimeZoneInformation(TZI) of
 TIME_ZONE_ID_STANDARD:
 begin
 Result := DateTime + (TZI.Bias/60/24);
 end;
 TIME_ZONE_ID_DAYLIGHT:
 begin
 Result:= DateTime + ((TZI.Bias+TZI.DaylightBias)/60/24);
 end
 else
 raise
 //Exception.Create('Error converting to UTC Time. Time zone
could not be determined.');
 end;
end;

In UTC time seconds can be in the range 0 to 60,

If there is a leap second planned, seconds can have the value 60.

You can have official information about planned leap seconds from
the "International earth rotation and reference systems service
(iers)" at http://hpiers.obspm.fr/iers/bul/bulc/bulletinc.dat

Below, a cut and paste from Bulletin C:

 A positive leap second will be introduced at the end of June 2015.
 The sequence of dates of the UTC second markers will be:

 2015 June 30, 23h 59m 59s
 2015 June 30, 23h 59m 60s
 2015 July 1, 0h 0m 0s

type
 PTimeZoneInformation = ^TTimeZoneInformation;
 _TIME_ZONE_INFORMATION = record
 Bias: Longint;
 StandardName: array[0..31] of WCHAR;
 StandardDate: TSystemTime;
 StandardBias: Longint;
 DaylightName: array[0..31] of WCHAR;
 DaylightDate: TSystemTime;
 DaylightBias: Longint;
 end;
 //{$EXTERNALSYM _TIME_ZONE_INFORMATION}
 TTimeZoneInformation = _TIME_ZONE_INFORMATION;

9

http://hpiers.obspm.fr/iers/bul/bulc/bulletinc.dat

Feedback @ max@kleiner.com

Literature: Kleiner et al., Patterns konkret, 2003, Software & Support

Links of maXbox and Time Routines:

http://www.softwareschule.ch/maxbox.htm

http://en.wikipedia.org/wiki/Time_travel

http://www.timeanddate.com/time/gmt-utc-time.html

http://www.freepascal.org/docs-html/rtl/sysutils/datetimeroutines.html

10

http://www.freepascal.org/docs-html/rtl/sysutils/datetimeroutines.html
http://en.wikipedia.org/wiki/Time_travel
http://www.softwareschule.ch/maxbox.htm
mailto:max@kleiner.com

	Time is on my side
	1.1 We program time
	1.2 Time Zones Table
	1.3 Time machine

