
//

Synthetic Data Generator
__

maXbox Starter91 – Build with P4D and SynDat

Make the fake.

Real data, extracted from the real world, is a gold standard for
data science and data protection, perhaps for obvious reasons.
In such a case, synthetic data producing can be used either in
place of real data, protect real user as an avatar or to augment
an insufficiently large dataset. With Python4Delphi scripting.

http://www.softwareschule.ch/examples/pydemo32_2.txt

Faker is a Python library1 that generates fake data. Fake data is
often used for testing or filling databases with some dummy data.
Faker is strong inspired by PHP's Faker, Perl's Data::Faker, and
Ruby's Faker.
We are also able to sample from a model and create synthetic data,
hence the name SynDat. The most obvious way that the use of
synthetic data benefits data science is that it reduces the need
to capture data from real-world events, and for this reason it
becomes possible to generate data and construct a dataset much
more quickly than a dataset dependent on real-world events and in
addition you don't misuse data protection.

1 https://pypi.org/project/Faker/

 1/6

http://www.softwareschule.ch/examples/pydemo32_2.txt

_PIC: 101_syndat_concept.png

Now I want to show almost step by step how we can use the Faker
Lib. First you had to install faker package, it can be installed
with pip:

C:\Users\Max\AppData\Local\Programs\Python\Python36-32>
 python -m pip install faker

Install a 32 bit package module in a 64 bit environment:

 1. Change to your 32 bit path with cd:
 C:\Users\Max\AppData\Local\Programs\Python\Python36–32>

2. Call the Pip (e.g. faker module) explicitly with
 python.exe: python -m pip install faker

And it runs:
Downloading
https://files.pythonhosted.org/packages/27/ab/0371598513e8179d9053
911e814c4de4ec2d0dd47e725dca40aa664f994c/Faker-9.9.0-py3-none-
any.whl (1.2MB)..
You are using pip version 9.0.1, however version 21.3.1 is
available.
You should consider upgrading via the 'python -m pip install
--upgrade pip'.
C:\Users\Max\AppData\Local\Programs\Python\Python36-32>
>>>>>>>>>>>

Now we start the program:
The fake.Faker (fake = Faker()) creates and initializes a faker
generator, which can generate data by accessing properties named
after the type of data, whether you need to bootstrap your
database, create structured JSON documents or fill-in your storage
persistence to stress test.

sw:= TStopWatch.Create();
 sw.Start;
 eg.execStr('from faker import Faker');
 eg.execStr('import simplejson as json'); //# instead import json
 eg.execStr('import dumper');
 eg.execStr('fake = Faker()');
 fprofile:= eg.evalStr('(fake.profile())')
 fprofile:= StringReplace(fprofile,'\n',CRLF,[rfReplaceAll]);

To clean up the data, we will also replace the newlines as \n in
the generated addresses with commas or CRLF, and remove the
newlines from profile generated text completely.

Faker delegates the data generation to providers. The default
provider uses the English locale. Faker supports other locales;

 2/6

they differ in level of completion, there are lots of ways to
artificially manufacture and build data, some of which are far
more complex than others and models real-world distribution with
descriptive statistics.
Check the output with path and list the profile dictionary, the
example outputs a fake name, address, and many more items of a
persons profile:

fake person profile:
{'job': 'Manufacturing engineer', 'company': 'Cunningham-Young', 'ssn':
'630-62-0344', 'residence': 'PSC 1590, Box 0125
APO AA 42693', 'current_location': (Decimal('-51.8228245'), Decimal('-
61.889364')), 'blood_group': 'A+', 'website': ['http://www.jones-
clark.net/', 'https://www.fowler.com/'], 'username': 'garciatina',
'name': 'Roger Nichols', 'sex': 'M', 'address': '51574 Combs Alley Apt.
142, Ryanhaven, AL 82796', 'mail': 'andrea31@hotmail.com', 'birthdate':
datetime.date(1914, 4, 15)}
creditcard#: 213140049750943
Stop Watch Faker Tester1: 0:0:0.636

This is not json as I first assumed, and we can convert it. I
tried first with json and simplejson, got some date and decimals
serialize exceptions (Object of type date is not JSON
serializable.), then I used dumper lib, but got a next exception
Exception: <class 'AttributeError'>: 'NoneType' object has no
attribute 'write'.: So the profile is a dict type, the misleading
{} trapped me first. Let's generate another avatar:

{'job': 'Nurse, adult', 'company': 'Rogers and Sons', 'ssn': '038-06-
4652', 'residence': 'PSC 8856, Box 2882
APO AE 08426', 'current_location': (Decimal('16.4363075'), Decimal('-
83.079826')), 'blood_group': 'A-', 'website': ['https://www.white.biz/',
'http://garrett-perez.com/'], 'username': 'xnelson', 'name': 'Ms. Colleen
Bowman PhD', 'sex': 'F', 'address': '328 Reeves Estates Apt. 279
Lake Nicholas, MD 31753', 'mail': 'kkhan@yahoo.com', 'birthdate':
datetime.date(1936, 6, 3)}

Oh what as surprise a nurse and she holds a PhD and works by
Rogers. What if, for instance, I'm interested in generating German
or Spanish names and professions of the type one would find in
Netherlands, Mexico, Austria or Switzerland?

fake = Faker(['de_DE'])
for i in range(10):

 print(fake.name())

eg.execStr('fake = Faker(["es_MX"])')
 //for i in range(10):
 for it:= 1 to 10 do
 println(UTF8toAnsi(eg.evalStr('fake.name()')));

>>> Alma María José Montañez Dávila ...

 3/6

The Faker constructor takes also a performance-related argument
called use_weighting. It specifies whether to attempt to have the
frequency of values match real-world frequencies and distribution
shape (e.g. the English name Gary would be much more frequent than
the name Welson). If use_weighting is False, then all items have
an equal chance of being selected, and the selection process is
much faster; the default is True.

The next line is a simple demonstration of Faker credit card:

 println('creditcard#: '+eg.evalStr('fake.credit_card_number()')); //}
 sw.Stop;

Faker also support for dummy hashes and uuids for SynDat:

#!/usr/bin/env python
from faker import Faker
faker = Faker()
print(f'md5: {faker.md5()}')
print(f'sha1: {faker.sha1()}')
print(f'sha256: {faker.sha256()}')
print(f'uuid4: {faker.uuid4()}')

In the end we close and free all the resources of objects,
including stop-watcher sw and python frame apd:

 except
 eg.raiseError;
 writeln(ExceptionToString(ExceptionType, ExceptionParam));
 finally
 eg.Free;
 sw.Free;
 sw:= Nil;
 apd.position:= 100;
 end;

You can also run the Python Engine script at runtime to get a
Faker() object and if something went wrong you got a raiseError Py
exception. Eval() function accepts a string argument and if the
string argument is an expression then eval() will evaluate the
expression as a callback with return (faker.proxy.Faker):

with TPythonEngine.Create(Nil) do begin
 pythonhome:= PYHOME;
 try
 loadDLL;
 Println('Faker Platform: '+
 EvalStr('__import__("faker").Faker()'));
 except
 raiseError;
 finally
 free;
 end;
end;

 4/6

>>> <faker.proxy.Faker object at 0x0CAFA850>

Conclusion
In this report, we used Python Faker to generate fake or synthetic
data in Python and maXbox with measuring time behaviour.

Finally, synthetic datasets can minimize privacy concerns.
Attempts to anonymize data can be ineffective, as even if
sensitive/identifying variables are removed from the dataset,
other variables can act as identifiers when they are combined.
This isn’t an issue with synthetic data, as it was never based on
a real person, or real event, in the first place.

A concept could mean, firms, institutes or simply users don't deal
with real person data, they got an avatar which makes an
relationship between a hash and a guid in a worldwide proxy block-
chain (pb1). A real person is protected behind the SynDat proxy
with a guid record.

Python for .NET is also a package that gives Python programmers
nearly seamless integration with the .NET Common Language Runtime
(CLR) and provides a powerful application scripting tool for .NET
developers and with Delphi or Lazarus just found that:

https://i2.wp.com/blogs.embarcadero.com/wp-
content/uploads/2021/07/demo01_Faker2-2809487.png?ssl=1

_PIC: 101_syndat_gui_profile.png

 5/6

https://i2.wp.com/blogs.embarcadero.com/wp-content/uploads/2021/07/demo01_Faker2-2809487.png?ssl=1
https://i2.wp.com/blogs.embarcadero.com/wp-content/uploads/2021/07/demo01_Faker2-2809487.png?ssl=1

SynDat topics and script:

• https://pypi.org/project/Faker/

• https://www.kdnuggets.com/2021/11/easy-synthetic-data-python-
faker.html

• http://www.softwareschule.ch/examples/pydemo32_2.txt

•

• https://www.unite.ai/what-is-synthetic-data/

• http://www.softwareschule.ch/examples/cheatsheetpython.pdf

**

Release Notes maXbox 4.7.6.10 II November 2021 mX476

**

Add 10 Units + 3 Tutorials

1441 unit uPSI_neuralgeneric.pas; CAI

1442 unit uPSI_neuralthread.pas; CAI

1443 unit uPSI_uSysTools; TuO

1444 unit upsi_neuralsets; mX4

1445 unit uPSI_uWinNT.pas mX4

1446 unit uPSI_URungeKutta4.pas ICS

1447 unit uPSI_UrlConIcs.pas ICS

1448 unit uPSI_OverbyteIcsUtils.pas ICS

1449 unit uPSI_Numedit2 mX4

1450 unit uPSI_PsAPI_3.pas mX4

Total of Function Calls: 35078

SHA1: of 4.7.6.10 D4B0A36E42E9E89642A140CCEE2B7CCDDE3D041A

CRC32: B8F2450F 30.6 MB (32,101,704 bytes)

 6/6

http://www.softwareschule.ch/examples/cheatsheetpython.pdf
http://www.softwareschule.ch/examples/pydemo32_2.txt
https://pypi.org/project/Faker/
https://www.unite.ai/what-is-synthetic-data/
https://www.kdnuggets.com/2021/11/easy-synthetic-data-python-faker.html
https://www.kdnuggets.com/2021/11/easy-synthetic-data-python-faker.html

	Synthetic Data Generator
	Conclusion
	SynDat topics and script:
	**

